Stimulation of GLUT4 (glucose transporter isoform 4) storage vesicle formation by sphingolipid depletion.
نویسندگان
چکیده
Insulin stimulates glucose transport in fat and skeletal muscle cells primarily by inducing the translocation of GLUT4 (glucose transporter isoform 4) to the PM (plasma membrane) from specialized GSVs (GLUT4 storage vesicles). Glycosphingolipids are components of membrane microdomains and are involved in insulin-regulated glucose transport. Cellular glycosphingolipids decrease during adipocyte differentiation and have been suggested to be involved in adipocyte function. In the present study, we investigated the role of glycosphingolipids in regulating GLUT4 translocation. We decreased glycosphingolipids in 3T3-L1 adipocytes using glycosphingolipid synthesis inhibitors and investigated the effects on GLUT4 translocation using immunocytochemistry, preparation of PM sheets, isolation of GSVs and FRAP (fluorescence recovery after photobleaching) of GLUT4-GFP (green fluorescent protein) in intracellular structures. Glycosphingolipids were located in endosomal vesicles in pre-adipocytes and redistributed to the PM with decreased expression at day 2 after initiation of differentiation. In fully differentiated adipocytes, depletion of glycosphingolipids dramatically accelerated insulin-stimulated GLUT4 translocation. Although insulin-induced phosphorylation of IRS (insulin receptor substrate) and Akt remained intact in glycosphingolipid-depleted cells, both in vitro budding of GLUT4 vesicles and FRAP of GLUT4-GFP on GSVs were stimulated. Glycosphingolipid depletion also enhanced the insulin-induced translocation of VAMP2 (vesicle-associated membrane protein 2), but not the transferrin receptor or cellubrevin, indicating that the effect of glycosphingolipids was specific to VAMP2-positive GSVs. Our results strongly suggest that decreasing glycosphingolipid levels promotes the formation of GSVs and, thus, GLUT4 translocation. These studies provide a mechanistic basis for recent studies showing that inhibition of glycosphingolipid synthesis improves glycaemic control and enhances insulin sensitivity in animal models of Type 2 diabetes.
منابع مشابه
Sorting of GLUT4 into its insulin-sensitive store requires the Sec1/Munc18 protein mVps45
Insulin stimulates glucose transport in fat and muscle cells by regulating delivery of the facilitative glucose transporter, glucose transporter isoform 4 (GLUT4), to the plasma membrane. In the absence of insulin, GLUT4 is sequestered away from the general recycling endosomal pathway into specialized vesicles, referred to as GLUT4-storage vesicles. Understanding the sorting of GLUT4 into this ...
متن کاملInsulin triggers surface-directed trafficking of sequestered GLUT4 storage vesicles marked by Rab10
Understanding how glucose transporter isoform 4 (GLUT4) redistributes to the plasma membrane during insulin stimulation is a major goal of glucose transporter research. GLUT4 molecules normally reside in numerous intracellular compartments, including specialized storage vesicles and early/recycling endosomes. It is unclear how these diverse compartments respond to insulin stimulation to deliver...
متن کاملRole for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake.
Insulin stimulates glucose uptake into adipocytes by promoting the translocation of the glucose transporter isoform 4 (GLUT4) from intracellular vesicles to the plasma membrane. In 3T3-L1 adipocytes GLUT4 resides both in an endosomal pool, together with transferrin receptors, and in a unique pool termed 'GLUT4 storage vesicles' (GSVs), which excludes endosomal proteins. The trafficking of GLUT4...
متن کاملmVps45 knockdown selectively modulates VAMP expression in 3T3-L1 adipocytes
Insulin stimulates the delivery of glucose transporter-4 (GLUT4)-containing vesicles to the surface of adipocytes. Depletion of the Sec1/Munc18 protein mVps45 significantly abrogates insulin-stimulated glucose transport and GLUT4 translocation. Here we show that depletion of mVps45 selectively reduced expression of VAMPs 2 and 4, but not other VAMP isoforms. Although we did not observe direct i...
متن کاملRegulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle.
Glucose transport across the cell surface is a key regulatory step for glucose metabolism in skeletal muscle. Both insulin and exercise increase glucose transport into myofibers through glucose transporter (GLUT) proteins. Skeletal muscle expresses several members of the GLUT family but the GLUT4 glucose transporter is considered the main "regulatable" isoform that is modulated by insulin and c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 427 1 شماره
صفحات -
تاریخ انتشار 2010